

Big Hole Watershed Committee

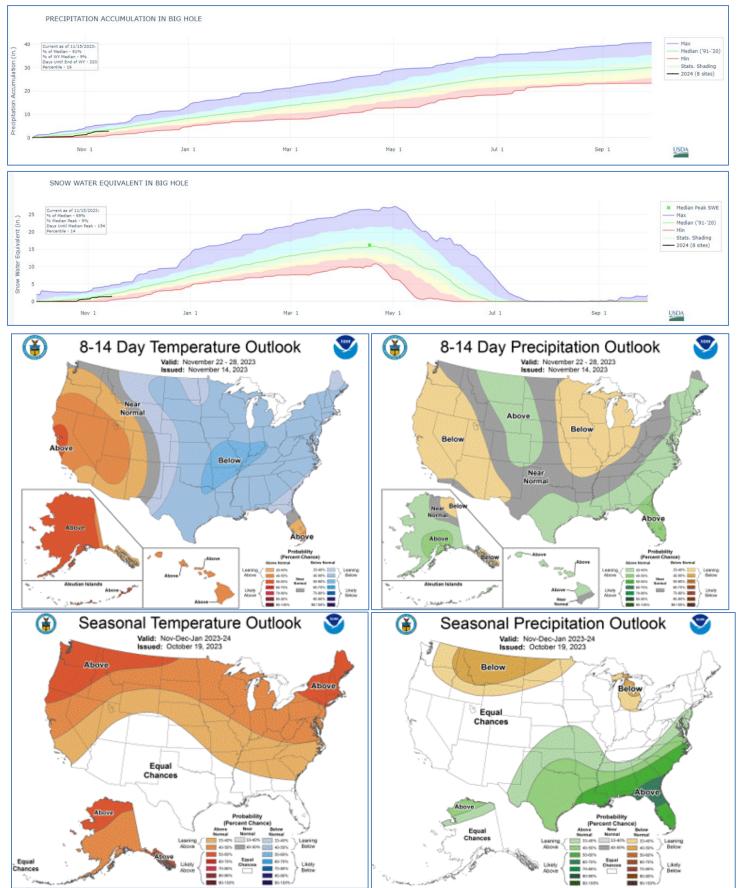
Monthly Meeting Minutes November 15, 2023 – 6:00 pm at the Divide Grange Zoom option also provided

In Attendance

In-person: Pedro Marques, BHWC; Tana Nulph, BHWC; Ben LaPorte, BHWC; Tom Bowler, Resident; Betty Bowler, Resident; John Reinhardt, Rancher/BHWC; Liz Jones, Rancher/BHWC; Wade Fellin, Big Hole Lodge; Tim Fay, Resident; Mary Sutherland, MBMG; Zach Owen, Beaverhead CD/Watershed Committee; Chris Edgington, Montana Trout Unlimited; Dean Peterson, Rancher/BHWC; JM Peck, Rancher/BHWC; Kim Giannone, UMW; Charlie Ivor, Elkhorn Ranch; Ginette Abdo, MBMG; Jenna Dohman, MBMG; Ann Hanson, MBMG; Diane Hutton, Resident/BHWC; Kaitlin Boren, DNRC; Roy Morris, GGTU/BHWC; Cass Kohler, MFWP; Jim Hagenbarth, Rancher/BHWC; Craig Fellin, Big Hole Lodge; Jim Griffin, Resident; Jacob Smith, Rancher; and Randy Smith, Rancher/BHWC.

Zoom: Brian Wheeler, BHRF/BHWC; Peter Frick, Rancher/BHWC; Paul Siddoway, Resident; and Atilla Folnagy, DNRC.

Meeting Minutes

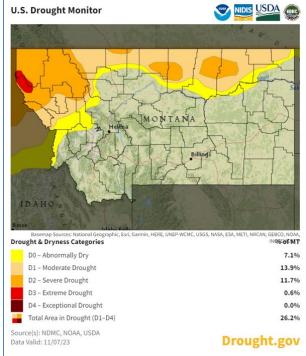

BHWC monthly meetings are held at the Divide Grange with a virtual (Zoom) option provided thanks to Southern Montana Telephone Company, who donated the internet service. Meeting minutes and recordings are available at <u>https://bhwc.org/monthly-meetings/</u> (scroll down for meeting minutes archive). Printed copies are available during in-person meetings. Contact Tana Lynch, BHWC Associate Director, at <u>tlynch@bhwc.org</u> or (406) 267-3421 to suggest additions or corrections.

Reports

Streamflow and Snowpack Report – Kaitlin Boren, Department of Natural Resources and Conservation

- All the seasonal loggers were collected in the Upper Big Hole and Wise River sites. Should see that data going up on StAGE here in the next month. *Streamflows:* All stream gages on the Big Hole River are either reporting ice conditions or are in seasonal status.
- *Precipitation:* Currently 81% of median.
- Snowpack: 2024 Water Year is at 69% of median, sitting at about 5 inches of Snow Water Equivalent (SWE) from the 8 SNOTEL sites.
- *Outlook*: The 8-14 day outlook predicts near normal temperatures and near normal precipitation.
- *Seasonal Outlook*: The three-month outlook (Nov-Dec-Jan) predicts above normal temperatures and below normal chances for average precipitation.
 - ENSO Alert System Status (from NOAA): El Niño Advisory

• *Synopsis:* El Niño is anticipated to continue through the Northern Hemisphere spring (with a 62% chance during April-June 2024).



Big Hole Watershed Committee, 2023

• *Drought Status:* Big Hole is currently not in drought, but northern reaches of the watershed may be abnormally dry.

Director's Report – Pedro Marques, Executive Director

- Newsletter and annual appeal
- DEQ TMDL review
 - Algae/silica discussion upcoming
- Wild Rockies Field Institute partner organization
- Water Storage subcommittee:
 - Proposal for storage planning to BoR Watershed Capacity
- Sign-ons:
 - America's Conservation Enhancement (ACE)
 Act: Increase wildlife conflict funding
 - Montana Nonprofit Association: Streamlining Federal Grants Act
- Army Corps Permitting language:
 - "In reviewing the PCN for a NWP27 proposed activity at a site, the district engineer will determine the district engineer will determine the district engineer will determine the district engineer will be district engineer wi

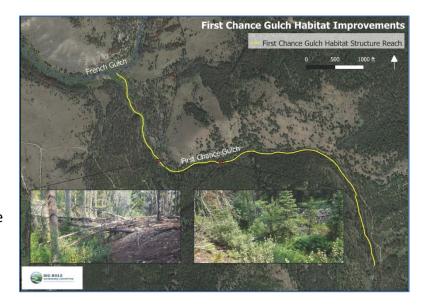
activity at a site, the district engineer will determine that the activity authorized by NWP27 is anticipated to result in an increase in aquatic function and services comparted to pre-project conditions at the site."

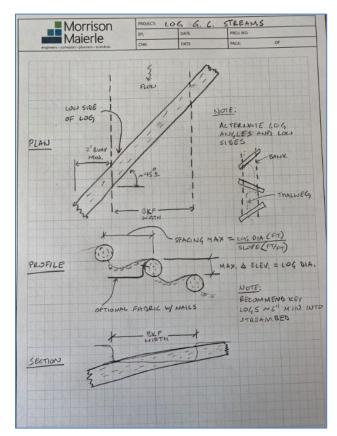
Steering Committee Report – Randy Smith, Chair; Jim Hagenbarth, Vice-Chair; Roy Morris, Secretary

• The steering committee met recently but had nothing to report.

Communications and Wildlife Report – Tana Nulph, Associate Director

- Wildlife funding!
 - Regional Conservation Partnership Preogram (NRCS) secured through HoTR
 - America the Beautiful Challenge (NFWF) secured through HoTR
 - Livesotck Loss Board '24 proposal submitted by BHWC
- Carcass Removal spring 2024
 - Dump truck from Red Rock Lakes NWR (working on getting it moved to the Big Hole ASAP)
 - Wood chips delivered to site
 - o Carcass removal will be offered free-of-charge to local ranchers March-May
 - o Call John to schedule pick-up: (209) 628-2225


Restoration Report – Ben LaPorte, Program Manager


- Future Fisheries Improvement Program Grant: First Chance Gulch
 - Proposed 50-80 log step habitat structures to be installed within 1.5 miles
- Other happenings:
 - Anaconda Uplands
 - 2023 reporting and future project planning
 - Trail Creek LTPBR meeting with USFS
 - Grant writing and reporting season

New Business

- UMW Water Conversation
 - December 7th, 4-6 PM
 - Topic: Water rights and exempt wells
 - Doing a series to get more people involved in an open conversation about water.
 - Kim Giannone, student at UMW
 - Trying to make agricultural perspectives available to students
- Jim attended weather modification webinar put on by Boise State University.
 - Montana DNRC attended.
 - DNRC will be doing pilot feasibility study on cloud seeding in Montana.
 - This is a BIG DEAL.

Break – 10 minutes

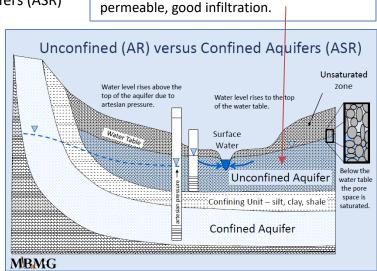
Meeting Topic: Managed Aquifer Recharge

Presented by: Ginette Abdo Montana Bureau of Mines and Geology

<u>Outline</u>

- Terminology
 - Managed Aquifer Recharge
 - Types of aquifers
- Aquifer storage and recovery
 - o The process
- Aquifer recharge
 - Examples of methods
- The Big Hole
 - Glimpse at what you have

Terminology


- Managed Aquifer Recharge (MAR): intentional banking or storing of water in aquifers. (Inject water into the ground, store it, and pump it back out when you need it.)
 - Aquifer Storage and Recovery (ASR): recharge and recovery using water wells to increase off peak storage.
 - Aquifer Recharge (AR): Surface techniques that involved land application including infiltration galleries.
 Unconfined aquifers: The type of aquifer
 - O Hybrids: Aquifer Recharge → Aquifer Storage and Recovery
 - Unconfined (AR) versus confined aquifers (ASR)

Suitability of MAR sites

- Aquifer Storage and Recovery:
 - Storage zone depth
 - Horizontal hydraulic conductivity
 - o Aquifer dominant lithology
 - Aquifer thickness
 - Aquifer storage
 - Confinement
 - o Groundwater quality
 - Drift velocity
 - Drawup/drawdown
- Aquifer Recharge:
 - Vertical hydraulic conductivity (infiltration rate)
 - Horizontal hydraulic conductivity
 - Aquifer dominant lithology

Aquifer Storage and Recovery (ASR)

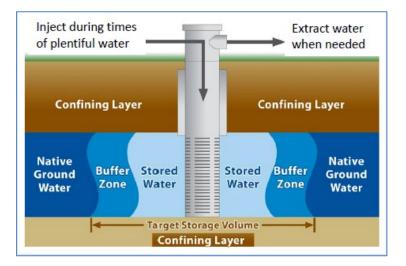
Water moved into an aquifer by well injection

The Global Groundwater Information System (GGIS) - MAR Portal

that is ideal if you want to use surface

infiltration techniques. Minimal clay, very

- Aquifer thickness
- Aquifer storage
- \circ Groundwater quality
- Depth to water table


MAR in the US

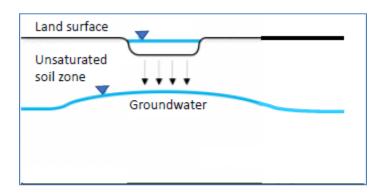
Big Hole Watershed Committee, 2023

Spreading methods (AR)

Well/borehole recl (ASR) River/lake bank

- Recovered from the same well (or nearby well)
- To do this ...
 - Hydrogeology
 - o Engineering
 - Permitting
 - o Infrastructure
- Target storage volume = stored water and buffer zone
- Feasibility Study:
 - Defines the objectives If you have the info, narrow your options.
 - Timeframe of need
 - Volume of water to meet needs
 - Source of recharge water:
 - Average flow, monthly variability
 - Proximity to aquifer
 - Hydrogeology
 - Overall site stratigraphy
 - Lithology
 - Well inventory
 - Engineering aspects
 - Financial considerations
 - Cost benefit analyses
 - Regulatory
 - Feasibility Assessment Report
 - Field study and conceptual design:
 - Field study (more detailed hydrogeology):
 - Test drilling
 - Geophysics?
 - Monitoring network
 - ASR well?
 - Aquifer tests
 - Chemistry
 - Conceptual design:
 - Based on detailed information
- Hydrogeologic Modeling:
 - Is data available to support this?
 - Yes \rightarrow Prior to pilot project
 - No \rightarrow End of pilot project
 - Data for literature sources, not likely:
 - Hydraulic analysis of wellfield design and operations
 - Analyze groundwater flow

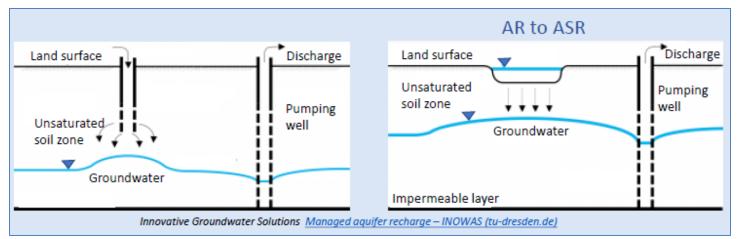
- Aquifer properties
- Water quality
- Storage capacity
- Groundwater velocity and direction
- Distance to water source
- Identify data gaps


- Engineering
- Cost
- Pilot project:
 - Implementation and testing
 - Test equipment
 - Well efficiency
- End game:
 - System feasibility analysis →
 System expansion
 - Design of pilot project
 - Operating ASR well

- Geochemical simulation to evaluate interactions between native groundwater and stored water, changes in chemistry?
- Pros:
 - More protected than alternative storage technologies such as reservoirs or surface impoundment
 - Sored water protected from evaporation, pollutants, and extreme weather events
 - No potential for levee failure and downstream flooding
 - Proven success
 - o Small storage footprint
- ASR Operating Ranges
 - Well depths: 150-2,700 ft
 - Storage interval thickness: 20 400 ft
 - Storage volumes: 100 270,000 acre-ft
 - Buffer radius: <1,000 ft
 - Well capacity:
 - Up to 8 MGD (25 acre-ft/day) (individual wells)
 - Up to 157 MGD (490 acreft/day) (well field)
 - o **2023**:
 - At least 600 ASR wells
 - In at least 140 ASR well fields
 - 25 states
 - Many different types of aquifers

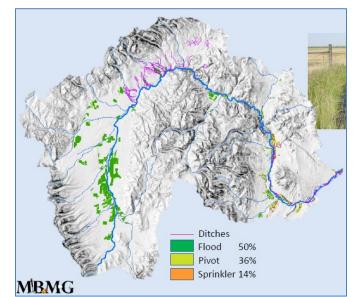
Aquifer Recharge (AR)

- Unconfined aquifer, continuous water release
- Captures water quickly BUT:
 - o Expensive
 - o Requires a lot of land
 - o Evaporation
 - Sediment issues
 - Can have environmental opposition
- Site screening considerations
 - o Location
 - Land ownership
 - Distance of site to:
 - Water source
 - Service area where do you need the water?
 - Three phase power
 - Environmental issues
 - Surface conditions

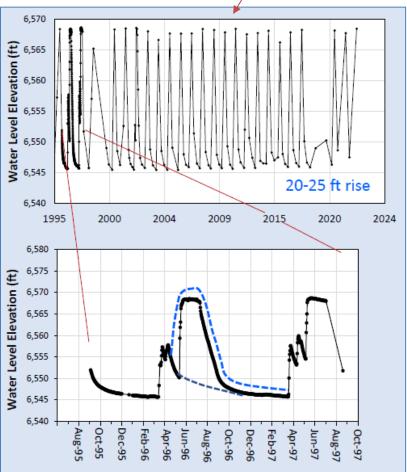

- Minimal effect on fisheries (does not affect fish passage)
- Phased implementation
- Cons:
 - \circ $\;$ Initial characterization will it work
 - Reduced storage control
 - Extractions limitation (regulatory)
 - \circ More energy intensive
 - Chemistry/treatment issues (clogging)
 - Maintenance and monitoring
 - o Expense

- Topography
- Surficial geology
- Soil permeability
- Engineering and cost related issues
- Sub-surface conditions:
 - Depth to groundwater (potential storage)
 - Aquifer permeability
 - Groundwater quality
- Infiltration basins:
 - Boulder River Watershed:
 - Appropriations exceed physical supply in most years. Boulder River runs dry in the late irrigation season – just when water is needed most.
 - Infiltration basin simulations:
 - 3.1 acres
 - Water added for 55 days (Mar 15 May 9)
 - Total flux infiltrated 691,200 cfd (8 cfs)
 - Model year 20
 - Predicted Boulder River flow increased by an average annual rate of 103,380 cfd (1.2 cfs)
 - Size and location determine amount of recharge and timing effects on surface water.
- In-channel modifications options for in-channel capture and storing of water during high flow periods:
 - o Dam structures: sand storage, wadi-recharge, rubber, debris or leaky dams
 - In-channel Infiltration Basins
 - Natural Flood Management
 - o Beavers

Hybrid Approach

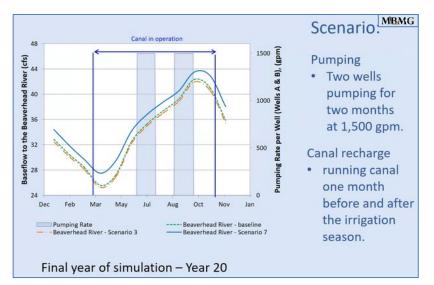


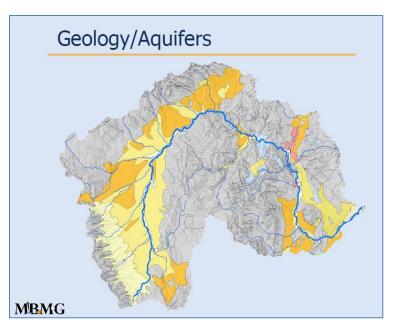
- Vadose zone injection well:
 - Useful if there are low permeability surface layers
 - Possible water treatment to prevent clogging
- Infiltration Basin:
 - Most applied

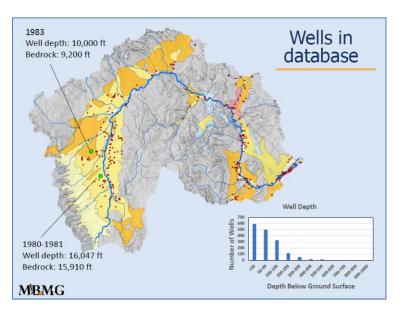

- o Unconfined aquifer
- Possible water treatment to prevent clogging

<u>Agricultural MAR (Ag-Mar)</u>: utilizes agricultural land and infrastructure to augment groundwater recharge

- Relies on water conveyance through existing canals, ditches, creeks, turnouts, and agricultural fields.
- Water available for recharge depends on climatic conditions and site-specific regulations such as minimum in-stream flow requirements or surface-water rights.
- Big Hole River watershed:
 - Total irrigated acres: 3,177 square miles
 - Ditches: 257 miles (excluding Beaverhead County – database is from a water resource survey in the 1950s-1960s - but Beaverhead County didn't complete survey, so the number is inaccurate.)
 - Ditch leakage:
 - Marvin and Voeller, 1997
 - 0.6 cfs/mile (average loss)
 - 0.05 to 3.4 cfs/mile (range)
- Irrigation recharge unintentional recharge
- Beaverhead River an example:
 - Purpose: determine if high capacity irrigation wells were depleting surface water.
 - MBMG collected data and created ground water model
 - Modeling scenario: two hypothetical pumping wells.
 - In the baseline scenario: no wells pumping
 - Then started pumping; model showed depletion (though minimal) over 20 years. MBMG investigated methods to mitigate depletion.
 - Then ran water in the west side canal one month earlier and one month later than usual.

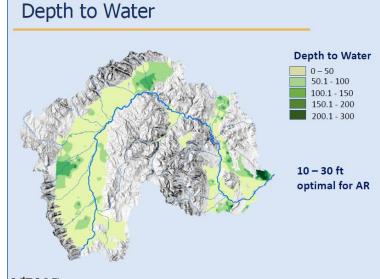



This is a well by Glen that MBMG has monitored for the last 30 years. Every year, there is a 20-25 rise in ground water during the irrigation season. An unintentional consequence of flood irrigation in the upper Big Hole = irrigation recharge for the lower Big Hole!

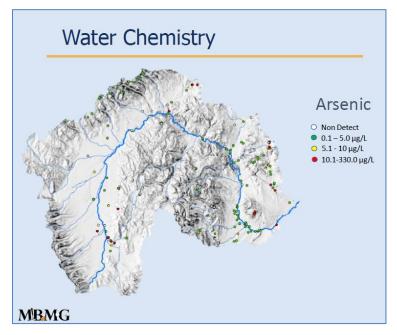


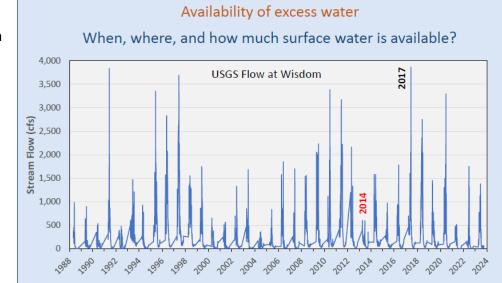
Showed that it would not only offset the water depletion over 20 years but would actually increase the Beaverhead River's baseline flow.

- Considerations:
 - Source water: water availability, quality, microbiology, nutrient loads to groundwater
 - Conveyance structures
 - Soil and unsaturated zone processes
 - Soil properties, infiltration rates, soil clogging
 - High sediment loading in river
 - Soil leaching (i.e., nitrates, salts)
 - Potential anoxic (low oxygen) conditions with extended flooding
 - Inorganic contaminates such as arsenic
 - Potential lower soil fertility
 - Crop suitability
 - Impact on groundwater
 - Regulatory
 - o Economic costs
- Suitability of MAR sites:
 - Multicriteria decision analysis
 - Hydrogeologic parameters
 - Aquifer Storage and Recovery:
 - Storage zone depth
 - Horizontal hydraulic conductivity
 - Aquifer dominant lithology
 - Aquifer thickness
 - Aquifer storage
 - Confinement
 - Groundwater quality
 - Drift velocity
 - Drawup/drawdown
 - Aquifer Recharge:


- Vertical hydraulic conductivity (infiltration rate)
- Horizontal hydraulic conductivity
- Aquifer dominant lithology
- Aquifer thickness
- Aquifer storage
- Groundwater quality
- Depth to water table

Legal, Regulatory, Institutional Considerations


- Montana Code Annotated
 - Title 85, Chapter 2, part 3: An aquifer storage and recovery project may be authorized in a closed basin.
 - 85-2-402: Changes in appropriation rights.
 - 75-5-410: Minimum requirements for water quality.
 - 85-2-360: A ground water appropriation right must be accompanied by a hydrogeologic report, an aquifer recharge or mitigation plan if required, and an application for a change in appropriation right or rights if necessary.
 - 85-2-361: Minimum requirements for a hydrogeologic report.
 - 85-2-362: Aquifer recharge or mitigation plans in closed basins – minimum requirements.
 - 85-2-364:
 Department permit coordination (DNRC and DEQ).


<u>Maintenance</u>

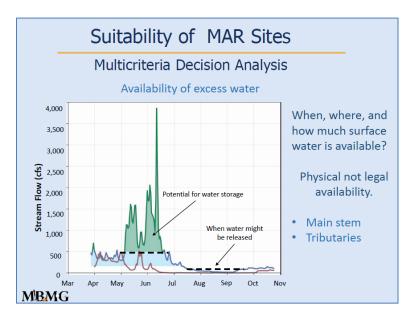
 Needed in all MAR methods

MBMG

- o Infrastructure maintenance (pumps, electrical, etc.)
- o Monitoring (groundwater, surface water, system efficiency)
- Sediment control, well clogging

Moving Forward

- Be strategic
 - o Suitability mapping
 - o Select potential sites
 - $\circ \quad \text{Feasibility study} \\$
 - Pilot project(s)
- Work in tandem
 - Low hanging fruit (Ag-Mar)
 - More technical (ASR)
- Capitalize on getting MAR going
 - Political impetus to see the Big Hole fishery improve
 - Maintain the culture of the valley


Upcoming Meetings

- BHWC does not meet in December
- January 17, 2024: Annual Business Meeting
 - 11:00 AM at Fairmont Hot Springs Resort
 - For Board and Staff only.
- February 21, 2024: Reclamation, Cheat Grass, and Water Conservation
 - 6:00 PM at the Divide Grange Hall

Adjourn

MBMG

